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Abstract

When stacked lamellar crystals are formed in melts, entanglements are trapped and condensed in amorphous domains (a-domains); this

makes the free energy of the a-domains increase and inhibits crystallization, thus, determines the crystalline structure of the system. Based on

the local-knot (LK) model of entanglement proposed by Iwata and Edwards, the entanglement state of the system is described by three

parameters, condensation ratio x, trapping ratio j and average number �n of LKs trapped per stem in the a-domains. It is shown that

crystallinity wc; average lamellar thickness �Lc and average a-domain thickness �La are written in terms of x, j and �n alone; this means that

structure of stacked lamellar crystals is determined by entanglement. Particularly, the microscopic structure is determined by how LKs are

partitioned in the stems of the a-domains. The equilibrium amorphous ratio in the limit M !1 (which is called ‘limiting equilibrium

amorphous ratio ŵ1
a ’) is a universal function of a reduced degree of supercooling, t ¼ ðNcDhm=kBT0

mÞDT=T; where Dhm is the enthalpy of

fusion and Nc is the critical chain length of the entanglement transition; this means that ŵ1
a ðtÞ is independent of polymer species, thermal

history or morphological properties of the system. Based on this result, a method is proposed to determine trapping ratio j experimentally.

Magnitudes as well as T- and M-dependence of wc; �lc and �la predicted by the theory agree reasonably with experiments. It is shown that the

topological free energy of entanglement accumulated in the a-domains plays an important role in the melting phenomena: For example,

folding surface energy se changes largely from that estimated by the usual Thompson–Gibbs equation, and the abnormal increase of se with

increasing M in stacked lamellar crystals, the phenomenon found by Schultz and Manderkern, is explained by the accumulated topological

energy. Mechanism of trapping LKs in the crystallization process is discussed in detail. q 2002 Published by Elsevier Science Ltd.
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1. Introduction

Semi–crystalline polymers usually have periodical

stacked lamellar structures of amorphous and crystalline

domains (which are hereafter called a- and c-domains).

These structures depend critically on the crystallization

condition, such as the quenching rate, crystallization

temperature and pressure, and also on detail microscopic

properties of polymers such as molecular weight, tacticity,

branching and so on. By recent developments of exper-

imental techniques, a large amount of evidences have been

accumulated that support this picture of semi–crystalline

polymers [1–3]. However, many fundamental questions

have not yet been answered.

(1) Why polymer chains should fold themselves in

forming lamellar crystals?

(2) How structure of semi-crystalline polymers, such as

crystallinity wc; a-domain thickness la; c-domain

thickness lc and so on, are determined?

(3) How nucleation of crystallization occurs?

(4) Are a-domains different from the ordinary melts?

I believe that entanglement should play central roles in

these problems.

The role of entanglement in crystalline polymers has

been discussed by Manderkern [1,2]. Polyethylene, for

example, is fully crystallized for molecular weight below

M < 104 but, as M increases beyond it, wc decreases and

approaches to a limiting value wc ¼ 0:25–0:3 (in the case of

isothermal crystallization). Mandelkern [1,2] argued that

entanglements (such as knots, links or other topological

analogues) existing in the initial melts are unknotted in the

process of crystallization of low-molecular-weight poly-

mers, so that their wc approaches unity; as M increases,

however, unknotting of entanglements becomes more

difficult and they are trapped in a-domains and block

thickening of the lamellae; the upper limit of wc appears
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when the all entanglements are trapped. Another closely

related phenomenon is the reversible change of lamellae, in

which wc; lc and la changes reversibly with changing T

below crystallization temperature Tc [4–6]. Several differ-

ent models are proposed for this phenomenon [6]: (1)

reversible melting and re-crystallization of the surface of

lamellae, (2) reversible formation and melting of new

crystallites (the so-called second crystallization) and (3)

reversible lattice distortion in the lamellae. Recently,

Albrecht and Strobl [6] studied this phenomenon in

polyethylene using the small-angle X-ray scattering and

delatometry method and found that lc increases with

decreasing la but neither new formation of crystallites nor

distortion of their lattice structure occur by cooling below

Tc: From these results, they concluded that the reversible

change of wc should come from the first mechanism (surface

melting of lamellae). Theoretical treatments of the surface

melting phenomena are given by Fisher [7], Mansfield [8,9]

and Strobl [6] based on trapped entanglements in the

amorphous domains. According to them, chains are pulled

out from the a-domains to thicken the lamellae as the system

is cooled below Tc; in this process, the trapped entangle-

ments are deformed to increase the free energy of the

a-domains; wc is determined by the balance between the

chemical potentials of elements in the a- and c-domains.

These two phenomena come from the same origin, trapped

entanglements in the a-domains: What considered by

Manderkern [1,2] is the M-dependence of wc while that

discussed by Fisher [7], Strobl [4–6] and Mansfield [8,9] is

the T-dependence of wc; but these phenomena should be

discussed consistently using the same model and theory.

Role of entanglement in fiber drawing process is well

known: drawing of polymer solutions and melts is possible

only when chains are well entangled with each other;

otherwise, strings cannot keep their form in the drawing

process. This mechanism is particularly important in the

ultra drawing method (gel drawing method) developed in

1980s [10,11]; in this technique, gels made from dilute

solutions of high molecular weight polymers are drawn

hundred times as long to form a super strong fiber with

nearly perfect crystalline structure [10]. It is found that the

rigidity of the fiber is linearly proportional to the maximum

extension ratio, which is eventually inversely proportional

to the square root of concentration c of the original

solutions. This result is interpreted that the maximum

extension ratio (and hence the rigidity of the fiber) is

determined by entanglement spacing MeðcÞ of the original

solutions [11]. In the drawing process, entanglements play a

positive and negative role: the positive role is that

entanglements keep a form of string in the drawing process;

the negative role is that they remain as defects and reduce

strength of the fiber. In any way, entanglements control the

process of crystallization and determine the final structure of

crystals formed. This must be the same in the all kinds of

crystalline polymers including single crystals formed in

dilute solutions, stacked lamellar crystals formed in melt

and fiber crystals formed by drawing.

Although there are these discussions, they are still

hypothetical and the role of entanglement in crystalline

polymers is not recognized well. This may be due to that the

present standard model of entanglement (the reptation/tube

model [12]) is not sufficient for these problems. The

reptation/tube model has been successfully applied to many

dynamic problems of entanglement, such as viscoelasticity

and diffusion of polymers [12]. However, it neglects

topological features of entanglement, particularly the

‘topological repulsive forces among local-knots (LKs)’,

which will play central roles in crystalline polymers as

shown in this work. By nature, entanglement is a matter of

topology and the role of entanglement in crystalline

polymers will be understood only in its topological

framework.

Local-knot model. Based on a topological consideration,

Iwata and Edwards [13,14] proposed ‘a local-knot model’,

in which entanglement is assumed to be composed of

elementary units called LKs, which are formed among

local-chains (local parts of chains of length ca. Ne; the

average chain length per entanglement) as shown in Fig. 1.

When a pair of local-chains forms an LK, its Gauss integral

takes near integer number ^1, ^2,…, and keep its state

until it moves to the end of the chains and unfastened. It is

predicted that LKs move like one-dimensional Brownian

particles along chains, interacting repulsively with one

another and, in a long-time scale, they take part in a

corrective motion which is assigned to the reptation motion

[15]. These behaviors of LKs are later confirmed by

computer simulations [17]. Although LKs cannot be

observed directly by experiments, they should be considered

as real physical entities since they are observed clearly by

the computer simulations [16,17]. LK model is consistent

with the reptation model in their dynamic behavior [15] but

it has many novel features, such as the topological repulsive

potential among LKs, which plays central roles in crystal-

line polymers. For example, the surface melting phenom-

enon is studied theoretically by Mansfield [8,9] using the

slip-link model (in which the topological repulsive force

is neglected), but it cannot explain the change of the

free energy due to condensation of entanglements found in

the previous work [17]. A similar condensation of

Fig. 1. Local-knot model.
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entanglements occurs in the a-domains of stacked lamellar

crystals and controls the crystallization process and structure

of the crystals formed. These phenomena are explained only

by topological models of entanglement, such as LK model.

In this series of works, various problems of crystalline

polymers, such as (1)–(4) stated in Section 1, will be

studied using LK model. These problems have been already

discussed in the Symposium on Macromolecules of the

Society of Polymer Science, Japan [20–23]. As an

introduction to these works, the second problem, “How

the structure of semi-crystalline polymers, such as wc; lc and

la; are determined?”, is discussed in this paper. The other

works will be given in later series.

2. Local-equilibrium between amorphous and crystalline

domains

Crystalline polymers are usually frozen in non-equili-

brium states but, when stacked lamellar crystals are

annealed for a sufficient long time, they approach to a

local-equilibrium state between a- and c-domains. Although

the local-equilibrium state is different from the true

equilibrium state (the extended-chain crystalline state), the

thermodynamic equilibrium condition can be applied

between the a- and c-domains. We consider such systems

as a standard state of stacked lamellar crystals. Stacked

lamellar crystals are formed in various ways: they are

usually obtained by cooling melt polymers but similar

stacked structures are formed by rearrangement of isolated

single lamellar crystals; there may be different kinds of

stacked lamellar crystals which require different theoretical

approaches. As an introduction, we consider here well-

annealed stacked lamellar crystals formed from melts in the

usual way. Non-annealed systems are also considered

briefly but their detailed discussion will be given in future

works.

The system considered here is composed of a- and c-

domains of thickness la and lc; staking periodically as shown

in Fig. 2. In the figure, S represents a surface of a lamellae

(c-domain), S0; a plane perpendicular to the chain-axis of

the lamellae and a, the tilt angle between S and S0: Between

the a- and c-domains, there are interfacial (i)-domains in

which the ordered structure of the c-domains dissipates

continuously to the random structure of the a-domains. We

call such parts of a chain that pass the a-, c- and i-domains,

a-, c- and i-sections of the chain, respectively; in Fig. 2, the

a-, c- and i-sections are shown by straight, broken and dotted

bold lines, respectively. Let La; Lc and Li be the chain-length

(in the unit of chain units) of the a-, c- and i-section. For

convenience, c-sections connected by tight-folds on the

folding surface are treated as single c-section (see Fig. 2) but

the length of tight-holds is neglected for simplicity in the

calculation of Lc: Tight-folding ratio wf (the ratio of chains

coming out and returning immediately to an adjacent

position on the folding surface of the lamellae) is rather

small, say, wf # 0:3 for polyethylene, so that the c-sections

contain no or, at most, few tight-folds.

In this work, we consider stacked lamellar crystals

formed of very long chains, each of which passes the a-, c-

and i-domains many times, say ten to hundred times. If

chain ends appear uniformly in the a-, c- and i-domains, the

total number of a- and c-sections, na and nc; must be the

same and the total number of i-sections, ni; twice of them.

Actually, the distribution of the chain-ends may not be

uniform but we do not know which of the three domains the

chain ends mainly appear. In any way, chain ends may be

neglected in the sufficiently long chains as considered here,

so that the simplest possible condition, na ¼ nc ¼ ni=2; may

be assumed. In this case, we may consider that the system is

composed of aici-sequences (sequences of a-, i-, c- and

i-section shown by a bold-straight, dotted, broken and

dotted lines in Fig. 2) and assume

ra
�la= �La ¼ rc

�lc= �Lc ¼ ri
�li= �Li ¼ M0nð1 2 wfÞcos a=NA; ð2:1Þ

where �La; �Lc and �Li are the number average of La; Lc and Li;
�la; �lc and �li; the number average of la; lc and li; ra; rc and ri;
the density of the a-, c- and i-domains, n, the number of

chains per unit area of surface S; and M0; the molecular

weight per chain unit. For short chains, Eq. (2.1) should be

corrected for chain-ends but such chain-end effects are

discussed in future works.

Now, let us consider how entanglements existing in the

initial melt are trapped in the crystallization process.

Following LK model, we assume that entanglement of

polymer chains is composed of elementary units called LKs.

In the equilibrium melt, an aici-sequence contains �n0 ¼

ð �Lc þ �La þ 2 �LiÞ=L0
LK LKs as an average, where L0

LK is the

average chain length per LK in the topological equilibrium

state. During crystallization and annealing, a part of LKs is

Fig. 2. Structure of stacking lamellar crystal.
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unknotted so that �n0 decreases to �n ¼ j �n0; where j is the

ratio (trapping ratio) of LKs remaining unsolved. We

assume that trapped LKs are all condensed in the a-domains

(or they do not enter in the i-domains), because the

i-domains have a similar high-density as the c-domains

(i.e. ri < rc . ra). Relative condensation ratio x of LKs in

the a-domains is defined by

x ¼ jð �La þ �Lc þ 2 �LiÞ= �La: ð2:2Þ

By definition, x is equal to unity in the equilibrium melt.

If a considerable part of LKs enters into the i-domains, Eq.

(2.2) should be modified; however, Eq. (2.2) must be a

rather good approximation in a low or medium supercooling

condition where the amount of the i-domains is small, say,

5–15% of the total volume in polyethylene.

In the previous work [17], chemical potential m of chain-

elements was computed as a function of x by computer

simulations of catena networks (permanently entangled

cyclic polymers), which is considered as a model of the a-

domains. In the simulations, systems are equilibrated with

an external element-bath of chemical potential m by a

hypothetical element exchange reaction under the restric-

tion that entanglement among the chains is conserved. The

catena network represents the a-domains and the element-

bath, the c-domains of the stacked lamellar crystals. The

simulation was done using the bond-fluctuation (BF) model

at volume fraction f ¼ 0:5: Chemical potential of chain

elements (repeating units of BF model) relative to its

equilibrium melt value was computed numerically and the

result is fitted by [17]

DmBFMðxÞ ¼ 0:03963 2 0:0369xþ 0:00199x2

2 0:00472x3; ð2:3Þ

which is transformed into the free energy per element as

follows [17]:

DfBFMðxÞ ; 2x
ðx

1
x0 22DmBFMðx0Þdx0

¼ 0:03963 2 0:0400xþ 0:0369x ln x

2 0:00199x2 þ 0:00236x3: ð2:4Þ

In these equations, DmBFMðxÞ and DfBFMðxÞ are given

relative to their topological equilibrium (melt equilibrium)

values; thus DmBFMð1Þ ¼ 0 and DfBFMð1Þ ¼ 0 by definition.

The catena network used in the simulations is different from

the a-domains in the following two points: (1) chain

elements in the a-domains are transferred through junction

point j on the lamellar surface S (see Fig. 2), while they are

added or removed randomly at any point of the chains in the

simulation and (2) the terminal points (junction points) of

the a-sections are fixed to the lamellar surfaces, while no

element is fixed to the cell-walls in the simulation. As for

the first point, DmBFMðxÞ and DfBFMðxÞ are exactly the same

whether elements are added or removed at a few selected

points (say, the junction points) or at any point of the chains,

so long as the system is well equilibrated. As for point 2, the

effect of fixed junction points may be neglected if �n; the

average number of LKs per a-section is sufficiently larger

than unity; in the systems considered here, �n is in the range

of few to hundreds as shown later so that this condition is

roughly satisfied. Thus, the catena network used in the

previous work [17] must be a good model of the a-domains.

To apply Eqs. (2.3) and (2.4) to real systems, DmBFMðxÞ

and DfBFMðxÞ must be converted into DmaðxÞ and DfaðxÞ of

the real polymers. Considering that DmBFMðxÞ and DfBFMðxÞ

come from the topological repulsion among LKs, conver-

sion is done by comparing Ne; the average entanglement

spacing, or Nc; the critical chain length of the entanglement

transition. There is, however, a problem in these indexes:

according to the universality hypothesis of entanglement,

ratio Nc=Ne should be constant but actually it changes

between 1.7 and 3 among polymers [18,19]. In the most

polymers the ratio is near two but polyethylene, which is

considered mostly in this work, has an unusually high ratio

Nc=Ne ¼ 3:0: It is, therefore, a serious problem which of Ne

and Nc should be used in converting DmBFMðxÞ and

DfBFMðxÞ into DmaðxÞ and DfaðxÞ of polyethylene. This

problem was discussed in the previous papers [18,19],

where we argued that Nc is more reasonable than Ne as the

index of entanglement, but it is still open to question.

Therefore, we consider two conversion factors for Ne and

Nc;

Ce ¼ Neðreal chainÞ=NeðBF modelÞ; ð2:5Þ

Cc ¼ Ncðreal chainÞ=NcðBF modelÞ: ð2:50Þ

Cð¼ Ce or CcÞ represents that each element of BF model

corresponds to C repeating units of a real chain. With the

Table 1

Basic parameters of BF model and polyethylene

BF model ðf ¼ 0:5Þa

Ne ¼ 89

Nc ¼ 170

LLK ¼ 63

Polyethylene

rc ¼ 1:000

ra ¼ 0:855

Dhm ¼ 4:1 kJ=mol

T0
m ¼ 141:4 or 145.5 8C

n ¼ 5:48 nm22

Ne ¼ 89:3 (in CH2)

Nc ¼ 271 (in CH2)

a Data for BF model are given in Refs. [17,18].
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use of C, DmaðxÞ and DfaðxÞ are given by

DmaðxÞ ¼ kBTDmBFMðxÞ=C;

DfaðxÞ ¼ kBTDfBFMðxÞ=C:

ð2:6Þ

For polyethylene, C is estimated to be Ce ¼ 1:00 or Cc ¼

1:6 using parameters given in Table 1. Thus, DmaðxÞ and

DfaðxÞ of polyethylene computed for Cc ¼ 1:6 are 60%

larger than those estimated by Ce ¼ 1:00; this discrepancy

is a serous problem in comparing the theory with

experiments. DmaðxÞ and DfaðxÞ computed for Cc ¼ 1:6
are plotted against x in Fig. 3. As seen from the figure,

DfaðxÞ takes minimum at x ¼ 1; DmaðxÞ decreases with

increase in x and becomes zero at x ¼ 1: By definition,

DmaðxÞ represents the work necessary to pull a chain in the

a-domain by one element into the equilibrium melts, thus it

represents tensile force acting along the chains. The force,

which is called the ‘topological tensile force’, comes from

the topological repulsion among LKs and is different, in its

origin as well as in its nature, from the ‘tensile force of tube’

assumed in the Doi–Edwards theory [12]. When the local-

equilibrium between the a- and c-sections is established,

x and DmaðxÞ should become constant in all a-sections in

the system. Number n of LKs trapped in each a-section is

determined statistically as a chain is integrated into the

lamellae in the growing front (this process is discussed in

Section 5); once n is determined, it is kept constant unless

the lamellae melt. Even if n is constant in each a-section, x

and DmaðxÞ become the same in the all a-sections in the

annealing process, where the a- and c-sections adjust their

lengths and positions along the chain by sliding motion in

the lamellae. If there is an imbalance of DmaðxÞ in two a-

sections connected to a c-section, it slides along the chain to

reduce the imbalance until x and DmaðxÞ become the same

in the all a-sections. This condition (equilibration of x and

DmaðxÞ in the all a-sections) is a basic requirement for the

local-equilibrium to be established.

Now, free energy DFðx; TÞ per aici-sequence is given by

DFðx; TÞ ¼ �LcDmcðTÞ þ �LaDfaðxÞ þ 2ŝe=ð1 2 wfÞ; ð2:7Þ

where DmcðTÞ is the chemical potential of element in the c-

domains relative to that of the equilibrium melt and ŝe; the

interfacial energy per stem on the folding surface. For a

moderate supercooling, DT ¼ T0
m 2 T ; DmcðTÞ is given by

DmcðTÞ ¼ 2DhmDT=T0
m; ð2:8Þ

where Dhm is the enthalpy of fusion per element. ŝe is not

necessary constant but may change with x (since tensile

force DmaðxÞ is acting on the surface of the lamellae).

However, such dependence of ŝe on x must be rather small,

at least for small DT ; so that we assume for simplicity that

ŝe does not change during the local-equilibration process.

Under this condition, the local-equilibrium state is deter-

mined by condition ›DFðT; xÞ=› �Lc ¼ 0 with �Lc þ �La ¼

const; which gives

DmcðTÞ ¼ DmaðxÞ: ð2:9Þ

This equation determines x as a function of T : xðTÞ thus

computed for polyethylene is plotted against DT in Fig. 4

(C ¼ 1:6 assumed). Since Eq. (2.9) represents a general

phase-equilibrium condition, it should hold even if se

change in the annealing process. To show this, however, we

must know the exact structure of the interfacial domains but

this is out of the scope of this work.

3. Crystallinity fc and trapping ratio j of LKs in well-

annealed systems

Crystallinity is usually defined as the volume faction of

the c-domains

fc ¼ �lc=ð�la þ �lc þ 2�liÞ; ð3:1Þ

which is determined by various methods, such as the

thermometric, delatometric, NMR, IR and Raman spectro-

scopic methods [1–3]. By the thermometric method, fc is

determined, by the delatometric method, the sum of volume

fraction of the c- and i-domains, fc þ fi; is obtained and by

Fig. 3. DmðxÞ and Df ðxÞ of polyethylene ðC ¼ 1:6Þ:

Fig. 4. x computed as a function of DT ð¼ T0
m 2 TÞ for polyethylene

ðC ¼ 1:6Þ:
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the spectroscopic methods, fa; fc and fi are separately

determined. It is important that these methods give mutually

consistent results [1,2]. In our theory, the basic quantity is

the weight fraction of the a-domains defined by

wa ; �La=ð �La þ �Lc þ 2 �LiÞ ¼ j=x: ð3:2Þ

Following Mandelkern [1,2], we assume that the densities of

the c- and i-domain are almost the same, rc < ri; then,

fc þ fi is rewritten as follows:

fc þ fi <
1=wa 2 1

1=wa 2 1 þ rc=ra

¼
x=j2 1

x=j2 1 þ rc=ra

: ð3:3Þ

Since x is given as a function of DT by Eqs. (2.8) and (2.9),

fc þ fi is a function of DT and j:
Extensive measurement of fc þ fi was done by Fatou

and Mandelkern [24] for polyethylene using the delato-

metric method. In their work, fractionated polyethylene of

Mh ranging from 3 £ 103 to 1.55 £ 106 are crystallized

isothermally at Tc ¼ 130 8C for 3–22 days and fc þ fi is

measured by changing T very slowly (say, 0.5 8C per day).

Some of their results are shown in Fig. 5. Since their

samples are kept at each temperature for one day before

measurement, the local-equilibrium between the a- and c-

domains must be approximately established. Fig. 5 shows

that fc þ fi decreases with increasing Mh: This is

explained as follows [1,2]: as Mh increases, more and

more LKs are trapped which obstruct crystallization and, as

the result, fc þ fi decreases with increasing Mh: In our

theory, this change is represented by trapping ratio j; which

increases from zero to unity as M increases from zero to

infinity. According to the theory, fc þ fi should decrease

from unity to a limiting value, ðx2 1Þ=ðx2 1 þ rc=raÞ; as j

increases from zero to unity (or M increases from zero to

infinity). However, the experimental results (Fig. 5) show no

tendency for fc þ fi to approach to a limiting value even at

Mh ¼ 1:55 £ 106: This seems strange, because Mh ¼

1:55 £ 106 must be already in the vicinity of M !1 from

the following reasons: (1) for M . 105; the lamellar

thickness of polyethylene isothermally crystallized at Tc ¼

130 8C approaches to a limit value of ca. 700 (in CH2 unit);

(2) at Tc ¼ 130 8C; sample Mh ¼ 1:55 £ 106 takes fc þ

fi ¼ 0:38; from which the average chain length per aici-

sequence is estimated to be �Lc þ �La þ 2 �Li < 2300

(wf ¼ 0:2 is assumed and 2 �Li is neglected); then, (3) each

chain of Mh ¼ 1:55 £ 106 contains 46 aici-sequences as an

average or it goes in and out the lamellae ca. 46 times.

Under such a condition, Mh ¼ 1:55 £ 106 must be near the

limit of j! 1 while fc þ fi decreases as large as 0.03 as

Mh changes from 1:47 £ 106 to 1:55 £ 106 and shows no

tendency to approach a limit. This contradictory result is

explained by possible existence of low-molecular-weight-

components (LMWC) in the samples. To show this, we first

note that j changes easily by a small amount of LMWC:

suppose that a sample is composed of high-molecular-

weight-component (HMWC) 1 with weight faction f1 and

LMWC 2 with weight faction f2; f1 þ f2 ¼ 1; and assume

that LKs formed by HMWC 1 alone are trapped completely

while those formed by LMWC 2 alone or those formed

between 1 and 2 are totally unknotted, then the trapping

ratio of this sample is equal to j ¼ f 2
1 : If sample Mh ¼

1:47 £ 106 contains such LMWC, say, by f2 ¼ 0:025; the

trapping ratio becomes j ¼ 0:95 even if M ¼ 1:47 £ 106 is

large enough to give the limit j! 1: If sample Mh ¼

1:47 £ 106 contains such amount of LMWC, while sample

Mh ¼ 1:55 £ 106 contains almost no LMWC, then their j

should differ by Dj ¼ 0:05; which is sufficient to explain the

change of fc þ fi in Fig. 5. Since sample Mh ¼ 1:55 £ 106

is the highest-molecular-weight residue of a column

fractionation, it should contains only a trace of LMWC,

while Mh ¼ 1:47 £ 106 is an intermediate fraction which

should contain a considerable amount of LMWC.1

From these considerations, we assume that sample Mh ¼

1:55 £ 106 is approximately in the limit of M !1 and

compare its fc þ fi with the theoretical curves for j ¼ 1:
At this point, however, another problem occurs: For

polyethylene, two different values of T0
m; 141.4 and

145.5 8C, are widely accepted and two possible values of

conversion factor C, Cc ¼ 1:6 and Ce ¼ 1:0; exist (c.f.

discussions in Section 2), thus, there are four possible

theoretical curves for the four combinations of T0
m and C;

fc þ fi is computed as function of T for these four

combinations of T0
m and C and the results are shown in

Fig. 5. T-dependence of fc þ fi of polyethylene ðMh ¼ 4:7–155 £ 104Þ

measured by Futou and Manderkern [24]. The samples are isothermally

crystallized at T ¼ 130 8C and never cooled below Tc: The experimental

points are fitted by theoretical curves (straight lines, C ¼ 1:25) with j as an

adjustable parameter.

1 In a later work [25], it was found that fc þ fi of sample Mh ¼ 8 £ 106

is less than that of Mh ¼ 1:55 £ 106: However, fc þ fi ( ¼ 1 2 l in their

notation) of Mh ¼ 8 £ 106 did not arrive at the local-equilibrium as evident

from Figure 3 of Ref. [25], so that the equilibrium value of fc þ fi of

sample Mh ¼ 8 £ 106 should be larger than that reported by them.
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Fig. 6. As seen from the figure, the slope of the experimental

points (filled circles) for Mh ¼ 1:55 £ 106 becomes steep

suddenly around T ¼ 134 8C; at which point melting begins

(melting phenomena are discussed in Section 4); therefore,

the theoretical curves should be compared with the points

below T ¼ 134 8C: The points for T # 134 come between

the two theoretical curves for T0
m ¼ 141:4 8C (the straight

and broken line), while they come below the two theoretical

curves for T0
m ¼ 145:5 8C (the chain and dotted line).

Considering that true experimental points for j! 1 will

come even below these points, T0
m ¼ 141:4 8C seems to be

more acceptable than T0
m ¼ 145:5 8C: As for conversion

factor C; it is difficult to say which of Cc ¼ 1:6 and Ce ¼

1:0 is more favorable. As argued in the previous paper [19],

we consider that Nc is more reasonable than Ne as the index

of entanglement but this problem is still open to question.

We must also consider possible errors in Nc (BF model) and

Ne (BF model) determined in the previous work [18].

Although there remain these problems, we may conclude

that the theoretical curves for j ¼ 1 and T0
m ¼ 141:4 8C

agrees reasonably well with the experimental points for

Mh ¼ 1:55 £ 106: Considering the uncertainty of C for

polyethylene, we had better treat it as an adjustable

parameter for fitting; the best fitting for Mh ¼ 1:55 £ 106

ðj ¼ 1; T0
m ¼ 141:4 8CÞ is obtained at C ¼ 1:25; which is

hereafter used as the conversion factor for polyethylene.

The result of fitting is shown in Fig. 5. Assuming T0
m ¼

141:4 8C and C ¼ 1:25; fc þ fi of the other samples are

fitted by theoretical curves with j considering as fitting

parameter. The results are shown in Fig. 5, in which j

decreases continuously form j ¼ 1 to 0.30 as Mh decreases

from 1:55 £ 106 to 4:7 £ 104: In Fig. 5, the experimental

points line on the theoretical curves in lower temperatures

but, at temperatures where melting starts, they begin to

deviate suddenly below the theoretical curves as expected.

The data shown in Figs. 5 and 6 are for the samples never

cooled below Tc ¼ 130 8C: Measurement was also done for

samples once-cooled to the room temperature, after

isothermal crystallization at Tc ¼ 130 8C for 5–22 days,

and then rising T very slowly for few weeks to the melting

points; some of their data ðMh ¼ 4:25 £ 105 and 1:47 £ 106Þ

are shown in Fig. 7 (open circles and triangles) together with

the corresponding data for the never-cooled samples (filled

circles and triangles, which are the same data as shown in

Fig. 5); the theoretical curves fitted at Tc ¼ 130 8C are also

shown in the figure.

High molecular-weight sample, Mh ¼ 1:47 £ 106:
Roughly speaking, fc þ fi of the never-cooled sample

agrees with that of the once-cooled sample. Since there is no

data of the never-cooled sample below Tc; we cannot know

how far fc þ fi of the two samples ðMh ¼ 1:47 £ 106Þ

agree with one another in the whole temperature range, but

it is important that fc þ fi of the once-cooled sample

almost returns to the value of the never-cooled sample

around Tc ¼ 130 8C; this means that no irreversible change

occurred in Mh ¼ 1:47 £ 106 by cooling below Tc: To

making this point more clear, measurement of the never-

cooled sample below Tc is necessary but, unfortunately,

there is no such data in the literature. Since the

experimental points for the never-cooled and once-

cooled samples ðMh ¼ 1:47 £ 106Þ agree roughly with

one another in 110 # T # 135; they should be almost in

the local-equilibrium state and should agree reasonably

with the theoretical curve as seen from Fig. 7. Outside

of this temperature range, the experimental data deviate

from the theoretical curve; the deviation for T . 135 is

due to melting of the lamellae; the deviation in the low

temperature region T , 110 may be a non-equilibrium

Fig. 6. Comparison of fc þ fi computed for j ¼ 1 with experimental data

of polyethylene Mh ¼ 155 £ 104 (the same data as shown in Fig. 5). The

theoretical curves are computed for four possible combinations of T0
m ¼

141:1 or 145.5 8C and C ¼ 1:0 or 1.6. Fig. 7. Comparison of fc þ fi of polyethylene never cooled below Tc with

those once cooled to the room temperature; Mh ¼ 42:5 and 147 £ 104. Data

come form Ref. [24]. Experimental points are fitted at T ¼ 130 8C with

theoretical curves (C ¼ 1.25) with j as an adjustable parameter.
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effect due to freezing of the sliding motion of the chains in

the lamellae.

Low-molecular-weight sample, Mh ¼ 4:25 £ 105: Its

behavior is different from that of the high-molecular-weight

sample, Mh ¼ 1:47 £ 106: As seen from Fig. 7, fc þ fi of

the once-cooled sample comes always above that of the

never-cooled sample and the former does not return to the

original value around Tc ¼ 130 8C: This indicates that

irreversible post-crystallization occurred in the once-cooled

sample. This change may be due to the formation of

crystallites in the a-domains, but it contradicts with the

result that irreversible change does not occur in the high

molecular-weight sample, which contains more a-domains.

A natural explanation is that further unknotting of LKs

occurs by cooling below Tc: If LKs are unknotted, j

decreases and thus fc þ fi of the once-cooled sample will

come above that of the never-cooled sample. The once-

cooled data are fitted around Tc ¼ 130 8C by a theoretical

curve with j ¼ 0:46; which is smaller by 0.10 than that of

the never-cooled sample j ¼ 0:56; this means that ca. 18%

of LKs remaining at the end of isothermal crystallization are

further unknotted by cooling to the room temperature. Then,

how it is possible to unknot LKs trapped in the a-sections

without melting lamellae. If the lamellae do not melt, chain-

ends must pass through the lamellae for LKs to be

unknotted. Does each chain-end pass through the lamellae

as shown in Fig. 8? If so, the velocity of unknotting should

be linearly proportional to its concentration, or should be

inversely proportional to M. In the present estimation,

unknotting of LKs does not occur in Mh ¼ 1:47 £ 106

(because the points of the once-cooled sample agree with or

even come below those of the never-cooled sample as seen

from Fig. 7), while a considerable amount (ca. 18%) of LKs

is unknotted in Mh ¼ 4:25 £ 105: This contradicts the above

argument that the velocity of unknotting is inversely

proportional to M, because Mh differs only by a factor

three in these samples. This is an interesting problem but we

cannot at present give a definite answer to it, because of the

accuracy of the present estimation.

Limiting equilibrium amorphous content ŵ1
a ðtÞ: Above

arguments are based on the assumption that sample

Mh ¼ 1:55 £ 106 is already in the limit j! 1: To check

this, the same experiment should be done for even higher

molecular weight, narrow-distributed samples, which

contain essentially no LMWC. By measuring fc þ fi of

such samples, which are crystallized isothermally and then

their temperature changed sufficiently slowly upward and

downward from Tc (without once-cooled to the room

temperature), we can know the T-dependence of local-

equilibrium fc þ fi in the limit j! 1: Theoretically, the

equilibrium amorphous weight-fraction in the limit j! 1 is

a more fundamental quantity, which is hereafter called the

‘limiting equilibrium amorphous ratio, ŵ1
a ’ (1 stands for

M !1 and ^ , the local-equilibrium). Putting j ¼ 1 in Eq.

(2.4), we find

ŵ1
a ¼ 1=x: ð3:4Þ

Since x is a function of T alone, so is ŵ1
a ; therefore, ŵ1

a is a

specific function of each polymer. Considering that x is

given as a function of T by Eq. (2.9), it is a universal

function of a reduced degree of supercooling

t ¼
NcDhm

kBT0
m

DT

T
: ð3:5Þ

Now, we arrive at an important conclusion, limiting

equilibrium amorphous ratio ŵ1
a ðtÞ is a universal function

of t alone and it is independent of polymer species as well as

thermal history and microscopic structure (such as �la; �lc; wc;
a, etc.) of the system. Once ŵ1

a ðtÞ is determined for a

polymer, we can compute ŵ1
a of any polymer at any

temperature. Theoretically, average LK size L0
LK should be

used for Nc on the rhs of Eq. (3.5) but Nc (or Ne) may be

better from the experimental points of view. In any way, if

the universality hypothesis of entanglement holds (i.e. if

ratios among Nc; Ne and L0
LK are constant among polymers),

we may use any of them to compute t, because the result is

the same except for the scale of t. Using Eqs. (3.2) and (3.4),

trapping ratio j is written as follows:

j ¼ ŵa=ŵ1
a ð3:6Þ

¼
1 þ ðrc=raÞð1=f̂

1
a 2 1Þ

1 þ ðrc=raÞð1=f̂a 2 1Þ
; ð3:7Þ

where ŵa and f̂a are the local-equilibrium values of wa and

fa: These equations can be used to determining j

experimentally. In deriving Eq. (3.7), rc ¼ ri is assumed;

therefore, Eq. (3.6) is more fundamental than Eq. (3.7).

Although j has never been discussed in crystalline

polymers, it is one of the most fundamental factors

determining the structure of stacked lamellar crystals. It

is, therefore, important that j of any sample (having any

chemical structure, M, thermal history and crystallographic

properties) can be determined purely experimentally by

measuring ŵa and using Eq. (3.6). It must be stressed that

Eq. (3.6) depends on none of the details of the present theory

except that xðtÞ is independent of M or any crystallographic

properties of the system, since it is determined in the catena

networks; in this meaning, Eqs. (3.6) and (3.7) must come

from a more general physical foundation.
Fig. 8. An isolate chain-end in the lamella. Does this explain unknotting

mechanism of LKs without melting the lamella?
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4. Melting point Tm and interfacial energy se of lamellae

Interfacial energy se is one of the most important

parameters but its exact value is not known in stacked

lamellar crystals. It is defined as the free energy per unit area

of folding surface S and it is related to ŝe by

se ¼ ŝen cos a; ð4:1Þ

where n is the number of stems per unit area of S and a, the

tilt angle. Experimentally, se is determined by the

relationship between lamellar thickness �lc and melting

temperature Tm: It is given by condition DFðx; TmÞ ¼ 0;
which gives with the use of Eqs. (2.1), (2.7) and (4.1)

DmcðTmÞ þ
j

x2 j
DfaðxÞ þ

2seM0

rc
�lc

¼ 0: ð4:2Þ

Usually, se is determined by the Thompson – Gibbs

equation,

Tm ¼ ð1 2 2seM0=Dhmrc
�lcÞT

0
m; ð4:3Þ

which is obtained by neglecting the entanglement term (the

second term) on the lhs of Eq. (4.2). Hereafter, the surface

energy determined by Eq. (4.3) is called ‘apparent surface

energy s
app
e ;’

sapp
e ¼ rc

�lobs
c DhmDTm=2M0T0

m; ð4:4Þ

where �lobs
c is the measured value of �lc; which changes with

the thermal history of the system.

It is well known that Eq. (4.4) gives a common value

se < 90 erg=cm2 in many polyethylene crystals, such as

single crystals, extended-chain crystals, etched or low

molecular weight crystals, which contain no or small

amount of a-domains [26]. However, it gives abnormally

large s
app
e in stacked lamellar crystals [27,28]. To see this,

s
app
e of isothermally crystallized polyethylene ðTc ¼ 130 8C;

Mw ¼ 1:25 £ 104 2 5:7 £ 105Þ determined by Mandelkern

et al. [28] are given in Table 2 (the fifth column). Their

results show that s
app
e increases with increasing Mw and, for

Mw ¼ 5:7 £ 105; it becomes more than four times the

ordinary value of se < 90 erg=cm2: This abnormal result is

explained by the entanglement term on the lhs of Eq. (4.2).

To show this, experimental conditions must be considered

carefully. In the most experiments, samples are crystallized

at Tc; cooled once to the room temperature Troom where �lobs
c

is measured and then T is elevated again to the melting

point. In the cooling process, the samples will be frozen at a

certain hypothetical local-equilibrium temperature T^

ðTroom # T^ # TcÞ; which is difficult to determine exactly.

To avoid this difficulty, the samples should be kept for a

sufficiently long time at the measuring temperature of �lobs
c

and j, in order for the local-equilibrium to be established. In

determining Tm; the temperature is usually elevated very

fast, say 1–10 8C/min, so that �lc; x; Dfa and j cannot follow

the change of T and will remain in their measured values
�l^c ¼ �lcðT

^Þ; x^ ¼ xðT^Þ; Df^a ¼ DfaðT
^Þ and j^; (note

that, to establish the local equilibrium, it takes a very long

time, say few weeks for polyethylene). To avoid the

unnecessary changes of �l^c ; x
^; Df^a and j^; T^ should

be chosen as close as Tm; the best way is to determine them

at T^ ¼ Tc: If these conditions are satisfied, �lc; x; Dfa and j

on the rhs of Eq. (4.2) are equated to �l^c ; x
^; Df^a and j^;

and DTm; to the observed value T0
m 2 Tm at the melting

point; thus we find

se ¼ 1 2
j^Df^a T0

m

ðx^ 2 j^ÞDhmDTm

" #
sapp

e ; ð4:5Þ

Table 2

Surface energy se of the stacking lamella crystals of polyethylene (computed for T0
m ¼ 145:5 8C)

Mw z ð¼ �lc=cos aÞ (in CH2)a Tm (8C) DTm s
app
e (erg/cm2)b jc se (erg/cm2)

DT^ ¼ 0d 4 8 12 16 20

12,500 470 136.2 9.3 172

20,000 722 136.7 8.8 213

38,000 625 137.0 8.5 219 0.30 195 189 184 178 174 169

47,000 906 137.2 8.3 311 0.31 275 266 257 250 243 236

56,000 720 137.2 8.3 254 0.31 227 219 213 206 201 195

56,000 1050 137.2 8.3 361 0.31 319 308 299 290 282 274

200,000 976 137.5 8.0 327 0.41 271 258 246 235 224 215

301,000 750 138.0 7.5 264 0.48 205 192 179 168 156 148

570,000 1100 139.0 6.5 375 0.63 236 206 178 153 130 109

Experimental data are given by Mandelkern et al. [28]; j and se are not computed for Mw ¼ 12; 500 and 20,000, because the present theory cannot be

applied to small j.
a z is the average lamella thickness (in the unit of CH2) taken from Ref. [28, table 2]. �lc is related to z by �lc ¼ 6 cos a; where a is the tilt angle of the lamella.

Although is not given in Ref. [28], it is not necessary in the present calculation of s
app
e and se; only experimental data of Tm and s

app
e are used in the present

calculation. z is shown here just for reference.
b s

app
e ( ¼ see in the original symbol of Ref. [28]) is computed using average z (the values given in the fourth column of Table 3 in Ref. [28]). Their original

data are given in cal/mol, which are converted into erg/cm2 by multiplying factor 170/4600 suggested by the authors.
c Estimated by interpolation of js given in Fig. 5.
d DT^ ¼ Tc 2 T^:
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where �lobs
c ¼ �l^c is assumed. In the definition of s

app
e given

by Eq. (4.3), the free energy of entanglement accumulated

in the a-domains (the second term on the lhs of Eq. (4.2)) is

formally included into s
app
e so that it is always over-

estimated than the true interfacial energy se; Eq. (4.5) gives

the correction for it.

To determine se using Eq. (4.5), �l^c ; x
^; Df^a and j^

must be known but no such data is available in the literature.

What we can do here is to show the effect of entanglement

on s
app
e using the experimental data given by Manderkern

et al. [28] (Table 2). We first note that the samples given in

Table 2 are prepared almost by the same methods as the

once-cooled samples shown in Fig. 5 (they are both

isothermal-crystallized at Tc ¼ 130 8C for 20–40 days and

then cooled to the room temperature); then, j of the former

samples may be estimated by interpolating j of the latter;

the results of the interpolation are given on the sixth column

of Table 2. j thus estimated may be approximately equated

to j^; since it changes only slightly in the cooling process. It

is difficult to determine the frozen temperature T^ of these

samples, because they are once cooled to the room

temperature. If they were quenched rapidly to the room

temperature, their �lc; x; j and Dfa would be almost kept at

their isothermal-crystallization values so that T^ < Tc may

be assumed. Actually, the samples are cooled slowly for one

day to the room temperature, so that T^ must be somewhere

below Tc: However, the difference DT^ ¼ Tc 2 T^ must be

rather small, since the local-equilibration takes a much

longer time, say, several weeks. Considering these points,

se is computed using Eq. (4.2), changing DT^ between 0

and 20 degrees and the results are shown in the 7–12th

column of Table 2. In this calculation, T0
m ¼ 145:5 8C is

assumed after Mandelkern et al. [28] As seen from Table 2,

s
app
e is always larger than se; because the topological free

energy accumulated in the a-domains is included in s
app
e :

The difference between s
app
e and se decreases with

decreasing Mw and becomes almost negligible for

Mw , 10,000; this is reasonable since trapping ratio j

decreases with decreasing Mw so that the topological free

energy accumulated in the a-domains becomes negligible. It

is remarkable that a small change of T^ gives a large effect

on the estimated value of se particularly for large Mw; i.e.

se decreases with increasing DT^; the change, mainly due

to increase of Df^a ¼ DfaðT
^Þ with DT^: Since T^ of the

samples is not known, se cannot be determined quantitat-

ively, but we can say that (1) the entanglement term give a

large effect on the estimated values of se particularly for

large M and (2) in contrast to s
app
e found by Manderkern

et al. [28], se decreases with increasing Mw (in Table 2, se

increases once and then decrease as Mw increases, but it is

not clear whether the initial increase is physically significant

or just an artificial effect due to the errors in the estimated

values or measurements).

There is another problem in determining se: In the above

calculation, T0
m ¼ 145:5 8C is assumed after Manderkern

et al. [28] but, if another popular value T0
m ¼ 141:4 8C is

chosen, a drastic change occurs. For T0
m ¼ 141:4; se is

computed in the similar manner and given on the 5–10th

column of Table 3, which shows that se estimated for T0
m ¼

141:4 is much smaller than that for T0
m ¼ 145:5: The

difference, 4.1 8C, between the assumed values of T0
m gives

large changes in DTm; which eventually leads drastic

decrease of se and gives even negative values for the

highest molecular weigh sample Mw ¼ 570,000. Of course,

negative values of se are physically impossible; such a

combination of T^ and Tm that makes se negative is

thermodynamically unstable and not realized. For DT^ .

4:2; se of Mw ¼ 570,000 becomes positive but the estimated

values are much smaller than the ordinary values

se ¼ 90 erg/cm2. It is also remarkable that se decreases

rapidly with increase of Mw: Such a strong M-dependence of

se seems unreasonable, though the precise structure of the

folding surface is not known well. The problem may be in

the assumed value, T0
m ¼ 141:4 8C: So long as the results in

Tables 2 and 3 are considered, T0
m ¼ 145:5 8C seems more

acceptable than T0
m ¼ 141:4 8C; this seemingly contradicts

the argument in Section 3 that T0
m ¼ 141:4 8C is more

favorable to explain the behavior of fc þ fi: However, the

present calculations are not so accurate as to answer this

difficult question, “which of T0
m ¼ 141:4 8C and 145.5 8C is

Table 3

Surface energy se of the stacking lamella crystals of polyethylene (computed for T0
m ¼ 141:4 8C)

Mw DTm s
app
e (erg/cm2)a j se (erg/cm2)

DT ^ ¼ 0b 4 8 12 16 20

38,000 4.4 113 0.30 96 89 83 78 73 69

47,000 4.2 157 0.31 131 121 112 104 97 90

56,000 4.2 129 0.31 107 100 92 86 80 72

56,000 4.2 183 0.31 152 141 131 122 113 105

200,000 3.9 159 0.41 119 104 91 79 68 58

301,000 3.4 120 0.48 77 62 49 36 25 15

570,000 2.4 138 0.63 35 1.6 228 255 280 2103

Experimental data and j are the same as given in Table 2.
a s

app
e is computed by the same method as in Table 2, except that T0

m ¼ 141:4 8C is used.
b DT^ ¼ Tc 2 T^:

K. Iwata / Polymer 43 (2002) 6609–66266618



right for polyethylene?” It should be discussed in a wider

context, considering many other data simultaneously, so

that it is out of the scope of this introductory work.

Although we cannot determine se of the stacked lamellar

crystals from the present calculations, we may at least

conclude that the entanglement term gives a serious effect

on its estimated value. To estimate it accurately, j and �lc
should be determined at the isothermal crystallization

temperature and Tm; by elevating T rapidly without once

cooling to the room temperature. To calculate j using Eq.

(3.6), ŵ1
a ðtÞ must be determined in advance for narrow-

distributed and UHMW samples. These conditions are

partly and separately realized in some experiments but,

unfortunately, the all necessary data ðŵaðTcÞ; �lcðTcÞ and TmÞ

are not given simultaneously. There is in principle no

experimental difficulty in performing these experiments. It

is, therefore, highly expected for them to be done, since se is

one of the most important parameters in crystalline

polymers.

5. Microscopic structure of the system

Up to this point, we have considered bulk properties such

as wc and Tm: Now, we study how the microscopic structure

such as thickness la and lc of the a- and c-domains are

determined. In the growing front of the lamellae, their

thickness lpa and lpc are different from their matured values, la

and lc: Since the microscopic structure is determined

primarily by lpa and lpc ; we should first consider how they

are determined in the crystallization process. Experimen-

tally, lpc changes with DTc ¼ T0
m 2 Tc as follows

lpc ¼ a=DTc þ b; ð5:1Þ

where a and b are constant [3]. Various theories have been

presented for the crystallization process of polymers [3].

Among them, the theory due to Lauritzen and Hoffman [29]

is the most popular, which treats formation of the secondary

nuclear of crystallization as reversible attachment of stems

on the growing surface of the lamellae. In the recent theory

of Sadler and Gilmer [30], reversible attachment of

individual chain-elements is considered. These theories

predict various features of crystallization, such T- and

M-dependence of growth rate or surface roughening

phenomena [3,29,30]. However, they are insufficient

because they neglect entanglement in the nucleation

process.2 I believe that entanglement should play a central

role also in this problem. Under this consideration, I have

recently constructed a new theory of nucleation (‘entangle-

ment-fluctuation theory’) based on LK model [22]. It will

be, however, given in a separate paper [32], because it needs

long and complicated discussions. In this paper, we consider

the following more simple problem, “how lpa is determined

for given lpc”.

Here, it is assumed that lpc is given by the empirical Eq.

(5.1) or by a certain theory, say, that will be given in the next

paper [22,32]. Suppose that a secondary stable nuclear of

width lpc is already formed on the growing surface and stems

are attaching to step sites as shown in Fig. 9; this process is

called ‘step reaction.’ For moderate supercooling DTc (i.e.

in the regime I and II of crystallization where the rate of the

secondary nucleation is not very fast), chains are mostly

crystallized by step reactions. The average feature of the a-

sections is, therefore, determined by the step-reactions.

There are three types of step reactions, in which tight-folds

are formed (B) and (C) or not (A) as shown in Fig. 9. Let Lp
c

be the frontier thickness (given in terms of chain-units) of

the c-domain. The change of the free energy due to the step

reactions are given by

Lp
aDm

p
c þ 2ŝnf ; ðreaction AÞ ð5:2Þ

Lp
aDm

p
c þ 2ŝf ; ðreaction BÞ ð5:3Þ

ð1 þ nfÞL
p
aDm

p
c þ 2ðŝnf þ nfŝfÞ; ðreaction CÞ ð5:4Þ

where Dmp
c is the frontier value of Dmc; ŝf and ŝnf are,

respectively, the tight-folding and no-tight-folding inter-

facial energy per end of stems and nf is the number of tight-

folds formed in step reaction C (in Fig. 9(C), nf ¼ 1).

Interfacial energy ŝe per the end of stems on the matured

Fig. 9. Three types of step reactions. Tight-folds are formed in type B and

C, but not in type A.

2 In the later version of the Lauritzen–Hoffman theory [31], the reptation

model is introduced to compute the velocity of reeling chains from melt.

We consider that entanglement should a more central role than this in

determining the size of nuclear as will be discussed in the next paper [22,

32].
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folding surface is given in terms of ŝf and ŝnf by

ŝe ¼ wfŝf þ ð1 2 wfÞŝnf ð5:5Þ

where wf is the tight-folding ratio. Free energy change 5.2–

5.4 represent the driving forces of the step reactions so that

they are always negative. In the initial stage of crystal-

lization of the chain, the step reactions occur rapidly

because the topological repulsion among LKs is small (since

concentration x of LK is near the equilibrium value, x ¼ 1).

As crystallization proceeds, the topological repulsion

increases with increasing x and crystallization stops at a

critical concentration, xp; where the topological repulsion

surpasses driving force 5.2–5.4. This process is schemati-

cally shown in Fig. 10, in which LKs are represented by

dots, the a-sections, by waving thin-lines and the c-section,

by straight bold-lines.

Suppose that an a-section of length La is crystallizing by

step reaction A as shown in Fig. 11 to form a c-section of

length Lp
c and two a-sections of length L0

a and L00
a; La ¼

L0
a þ L00

a þ Lp
c : For simplicity, the i-sections are neglected,

since the interfacial domains are small for moderate

supercooling DTc: It is also sufficient to consider step

reaction A alone, because Lp
a is determined only by it as

shown later. Let x be the concentration of LK in the a-

section before the reaction. The reaction occurs in such a

manner that the newly formed a-sections have the same

concentration,

x1 ¼ xLa=ðLa 2 Lp
cÞ: ð5:6Þ

The change of the topological free energy of LKs due to the

reaction is given by

DFLKðLa; Lp
c ; xÞ ¼ ðLa 2 Lp

cÞDfaðx1Þ2 LaDfaðxÞ; ð5:7Þ

which is always positive, since x increases by the step

reaction. The net change of the free energy due to formation

of the new c-section is given by the sum of DFLKðLa; Lp
c ; xÞ

plus the driving force of the step reaction, Eq. (5.2),

DFðLa; Lp
c ; xÞ ¼ DFLKðLa; Lp

c ; xÞ þ Lp
cDm

p
c þ 2ŝnf : ð5:8Þ

On the rhs of Eq. (5.8), Lp
cDm

p
c þ 2ŝnf is negative while

DFLKðLa; Lp
c ; xÞ is positive and nearly zero initially but

increases with progress of crystallization of the chain. Thus,

DFðLa; Lp
c ; xÞ is negative in the initial stage, where

step reactions occur frequently. As crystallization proceeds,

DFðLa; Lcp; xÞ increases with increasing DFLKðLa; Lp
c ; xÞ

and crystallization stops when DFðLa; Lp
c ; xÞ becomes

positive. Even if DFðLa; Lp
c ; xÞ becomes positive in shorter

a-sections, it remains negative in longer a-sections, because

DFLKðLa; Lp
c ; xÞ decreases with increasing La: Therefore, the

critical concentration xp at which crystallization of the chain

finally stops is given by

DFLKðL
pmax
a ; Lp

c ; x
pÞ þ Lp

cDm
p
c þ 2ŝnf ¼ 0 ð5:9Þ

where Lpmax
a is the maximum length of the a-sections in the

growing frontier. Since the new c-section can be formed in

any part of the a-section, La should distribute uniformly

between 0 and Lpmax
a ; this means that the average length of

the a-section just after finishing crystallization is given by

�Lp
a ¼ Lpmax

a =2: ð5:10Þ

Up to this point, we consider only step reaction A,

neglecting formation of tight-folds by step reaction B and

C (Fig. 9). B and C will not occur in the final stage of

crystallization, because ŝf is larger than ŝnf so that driving

force 5.3 and 5.4 for B and C are smaller than 5.2 for

A. Tight-folds will be mainly formed in the initial stage of

crystallization where DFðLa; Lp
c ; xÞ is still well negative. In

the calculation of average length �Lp
c of the c-section,

however, the tight-folds should be counted. Considering that

Fig. 10. As crystallization proceeds in a chain, x increases from the

topological equilibrium value x ¼ 1 to final value xp . 1: Bold and waving

thin lines represent c- and a-sections, respectively, and dots, LKs trapped in

the a-sections.

Fig. 11. When a step reaction A occurs in an a-section of length La; two new

a-sections of length L0
a and L00

a : and a c-section of length Lp
c appear; La ¼

Lp
c þ L0

a þ L00
a :
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�Lp
c is the number average of Lc on the growing surface of

lamellae, where tight-folding ratio wf should be the same as

that in the matured lamellae, we find

�Lp
c ¼ Lp

c=ð1 2 wfÞ: ð5:11Þ

Now let us consider how final concentration xp is

determined. We first note that x is apt to be equalized in

the chain due to the following three mechanisms: (1) step

reactions occur more frequently in low x sections than in

high x sections, (2) step reactions occur in such a manner

that the newly formed a-sections have the same concen-

tration given by Eq. (5.6) and (3) unbalance of x in adjacent

a-sections produces topological repulsive forces which

make c-sections move along the chain in the direction to

reduce the local unbalance of x. Mechanism 1 levels off a

long-scale distribution of x; which is produced by unequal

unknotting frequencies of LKs in the terminal and

intermediate parts of the chains; i.e. unknotting of LKs

occurs more frequently in the terminal parts than in the

intermediate parts, so that x apt to be smaller in the terminal

than in the intermediate parts of the chain. The short-range

fluctuation of x is smoothed by all the three mechanisms. If

all the a-sections of the chain have the same concentration

xp at the end of crystallization, it is given by

xp ¼ jpð �Lp
a þ �Lp

cÞ= �L
p
a ; ð5:12Þ

where �Lp
a and �Lp

c are the number averages of Lp
a and Lp

c ; and

xp is the trapping ratio of LK in the growing front.

Generally, Eq. (5.12) gives certain average of xp over its

distribution along the chain, but the effect of the distribution

must be small since xp is apt be equalized by the above three

mechanisms. Combining Eqs. (5.6)–(5.12), �Lp
a is deter-

mined for given Lp
c : The average number of LKs trapped per

a-section is given by

�n
p ¼ jpð �Lp

a þ �Lp
cÞ=L0

LK; ð5:13Þ

where L0
LK is the average chain length per LK in the

equilibrium melt.

Now, xp; jp; �np; �Lp
a and �Lp

c are all local values in the

growing front. In some polymers, sliding motion of chains

in the lamellae does not occur; in such polymers, their bulk

values, x; �La and �Lc; are frozen at their frontier values, xp; �Lp
a

and �Lp
c : On the other hand, if the sliding motion occurs and

the local-equilibrium is well established, they change

toward their matured values, x; j; �n; �La and �Lc: However,

the change of jp and �np must be small in long polymers,

because, unknotting of LKs should occurs for them to

change but it must be difficult once the chain is integrated

into the lamellae. It may, therefore, be assumed

j < jp and �n < �n
p: ð5:14Þ

Of course, j and �n change when the system is annealed for a

sufficiently long time as discussed in Section 3, but their

changes must be small in the crystallization process of very

long chains as considered here. On the other hand, xp

changes largely by annealing; its local-equilibrium value x

is determined by Eq. (2.9). The local-equilibrium values of
�La and �Lc are given in terms of x; j and �n as follows:

�La ¼ �nL0
LKx

21; ð5:15Þ

�Lc ¼ �nL0
LKðj

21 2 x21Þ; ð5:16Þ

The weight fraction of the a-domains is given by

wa ¼ j=x: ð5:17Þ

It is remarkable that wc (or wa), �La and �Lc are given in terms

of entanglement-related quantities, x; j; �n and L0
LK; alone

(Eqs. (5.15)–(5.17)). Usually, the structure of stacked

lamellar crystals is discussed in terms of wc (or wa), �La

and �Lc; in this meaning, The structure of the stacked

lamellar crystals is determined, macroscopically as well as

microscopically, by entanglement. Particularly, the bulk

properties ðwa or wcÞ are determined by x and j alone, while

the microscopic structure ð �La and �LcÞ depends on extra

parameter �n or how LKs are partitioned in the a-sections.

Since �n is independent of x and j, systems of the same

crystallinity may have variety of microscopic structures

according to how LKs are partitioned in the a-sections.

Although these entanglement-related indices, x; j and �n;
have never been discussed before, they should play central

roles in the stacked lamellar crystals.

Numerical calculations. As an example, numerical

calculations are done for polyethylene. We assume that lpc
is given by the empirical Eq. (5.1), which is rewritten in

terms of the chain unit as follows

Lp
c ¼ kŝeT0

m=DhmDTc þ dL; ð5:18Þ

where k and dL are constants. For a moderate DTc; the

second term dL may be neglected against the first term.

Hoffman and Week [33,34] found that, in the early stage of

crystallization, the plot of DTm vs. DTc (Hoffman–Weeks

plot) shows often a straight line of slope 0.5; this means that

k is equal to ca. four in many systems.3 Considering these

points, we assume that dL is zero and k; a constant near four.

If Dmp
c ¼ Dmc is assumed, Eqs. (5.6), (5.9) and (5.12) are

rewritten as follows:

ð2 �Lp
a 2 Lp

cÞDfaðx
p
1Þ2 2 �Lp

aDfaðx
pÞ ¼ kŝe 2 2ŝnf ; ð5:19Þ

xp ¼ jp½ �Lp
a þ Lp

a=ð1 2 wfÞ�= �L
p
a ; ð5:190Þ

xp1 ¼ 2xp �Lp
a=ð2 �L

p
a 2 Lp

cÞ: ð5:1900Þ

These equations determine �Lp
a for a given Lp

c (assuming that

wf and jp are already given elsewhere). Once �Lp
a is known, �n;

�La and �Lc are computed by Eqs. (5.13)–(5.16), thus, we can

know the microscopic structure of the system. Interfacial

energy ŝe and ŝnf must be also given. We assume

se ¼ 90 erg/nm2 for polyethylene. To convert se into ŝe

using Eq. (4.1), tilt angle a must be known but it is not

usually given in the literatures. We may assume arbitrarily

3 To get this result, Thompson–Gibbs Eq. (4.3) is assumed, which should

hold approximately in the early stage of crystallization where condensation

of LKs is still small.
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a ¼ 0; because se itself is not known well in stacked

lamellar crystals (c.f. discussion in Section 4) so that it is not

worth discussing the accuracy of a assumed. Non-tight-

folding interfacial energy ŝnf is also not known, but its value

gives no serious effect on the rhs of Eq. (5.19), because ŝnf

must be considerably smaller than ŝe; therefore, we assume

arbitrarily ŝnf ¼ 0:5ŝe: In this work, k is treated as sole

adjustable parameter ð2:4 # k # 6Þ and uncertainties in a;
ŝe and ŝnf assumed are formally included in the change of

k; (theoretically, k should be determined in the nucleation

process on the growing surface of lamellae; this problem

will be discussed in the next paper.4 Tight-folding ratio wf ;
which appears on the rhs of Eq. (5.19a), give a considerable

effect on �n; �Lp
a ; �La and �Lc but it changes only slightly

ordinary observable quantities such as wc; �la and �lc; in this

work, therefore, we assume arbitrarily wf ¼ 0:3: If Eq. (5.5)

holds, ŝe must depend on wf but such a change of ŝe is also

formally included in the change of k: Trapping ratio jp (< j

assumed) should be determined in the frame of our theories

but, at present, it is considered as a variable parameter.

The numerical calculations are done changing DTc and j

in range 5 # DTc # 30 and 0:4 # j # 1; region j , 0:4 is

omitted because the present theory cannot be applied to

small j; region DTc , 5 is omitted because the numerical

calculation become unreliable. Parameter k is changed in

range 2:4 # k # 6; but the most calculations are done for its

most probable value, k ¼ 4: The results of the calculations

are summarized as follows:

(1) Behaviors of �Lp
a ; �La and �Lc: In Figs. 12–14, �Lp

a ; �La and
�Lc are plotted against DTc; changing j (k fixed at four).

Roughly speaking, these quantities behave like 1=DTc; this

comes from the similar DTc-dependence of Lp
c given by Eq.

(5.18) (in which L ¼ 0 is assumed). However, j-dependence

of �Lp
a and �La are quite different from that of �Lp

c and �Lc : �L
p
c is

independent of j by definition and �Lc changes only slightly

with j (Fig. 14), while �Lp
a and �La decrease rapidly with

decreasing j (Figs. 12 and 13). This result is reasonable,

because �Lp
c and �Lc are primarily determined by the

secondary nuclear size, which should be independent of j,

while the amount of a-domains is determined by the number

of LKs trapped in the a-domains. To see the effect of

parameter k, �Lp
a is plotted against DTc changing k (j fixed at

unity) in Fig. 15, which shows that �Lp
a is almost independent

of k; this is in contrast to the behavior of Lp
c ; which changes

linearly proportional to k (c.f. Eq. (5.18) dL ¼ 0 assumed).

(2) Average number of trapped LKs per a-section �n: It is

plotted against DTc changing in j Fig. 16. �n behaves almost

like �Lp
a except for their scales; it change like 1=DTc and

decreases rapidly with decreasing j: It is important that �n is

considerably larger than unity; if �n were less than unity, the

present theory would become insignificant.

(3) Ratio �lc=�l
p
c : By annealing, the thickness of the

Fig. 12. Frontier a-domain thickness �Lp
a ; j is changed between 0.4 and 1, k

fixed at four.

Fig. 13. Local-equilibrium a-domain thickness �La computed at T ¼ Tc; j is

changed between 0.4 and 1, k fixed at four.

Fig. 14. Local-equilibrium c-domain thickness �Lc computed at T ¼ Tc; j is

changed between 0.4 and 1, k fixed at four. For refrerence, frontier c-

domain thickness Lp
c is shown by dotted line.

4 According to the early works of Strobl et al. [4,5] this sample should

contain interfacial domains of �li ¼ 0:5–1:4 nm; [4] which are further

divided into crystalline-like and amorphous-like transition regions [5].

These regions should give considerable effects on fc þ fi, �la and �lc but they

are neglected in the present introductory work.
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c-domains increases while that of the a-domains decreases

so that the growing fronts of the lamellae have a trapezoid

form as shown in Fig. 17; this means �Lp
a . �La and �Lp

c , �Lc;
which are seen from Figs. 12–14. In Fig. 18, ratio �lc=�l

p
c

ð¼ �Lc= �L
p
cÞ is plotted against DTc (only the result for j ¼ 1 is

given, since �lc=�l
p
c is almost independent of j ). For k ¼ 4;

ratio �lc=�l
p
c is roughly constant near 1.4. However, �lc=�l

p
c

increases considerably with decreasing k (Fig. 17).

(4) Condensation ratio xp and x: They are plotted against

DTc in Fig. 19. As argued in Section 3, x is a specific

function of T and it is independent of any other crystal-

lographic properties of the system. On the other hand, xp

decreases largely with decreasing j (or decreasing M ). For

small j; xp is near the melt value, x ¼ 1; thus almost no

condensation of LKs occurs in the growing front of short

polymers. As j increases, xp increases to a considerable

value, say, xp ¼ 1:5; so that considerable condensation

occurs in the growing front of long polymers. This

difference may explain the change of morphology (say,

the transition from spherulite to axialite) with increasing M

observed in experiments [3]. It is also important that xp is

considerably smaller than its matured value x (Fig. 19); this

means that there is a steep gradient of chemical potential

Dma near the growing front of the a-domains (see Fig. 18).

Since the topological repulsive force among LKs is larger

than or similar, in magnitudes, to the driving force of

crystallization, LcDmc; or surface tension ŝe; the M-

dependence of xp and the gradient of Dma in the growing

front should give large effects on the growth mechanism,

although such a effect has never been discussed. These

problems will be discussed in future works.5

Comparison with experiments. T-dependence of �la is

studied by Albrecht and Strobl (AS) for polyethylene using

small-angle X-ray scattering [6]. Trapping ratio j of their

sample (BASF Lupolen 6011L isothermally crystallized at

Tc ¼ 124 8C) is determined from T-dependence of fc þ fi

(¼ vc in their notation) as shown in Fig. 20, in which the

experimental data read from Fig. 8 of their paper [6] are

fitted with a theoretical curve of j ¼ 0:51 (C ¼ 1:25

assumed as discussed in Section 3). Fig. 20 is similar to

that of Fatou and Mandelkern’s [24] shown in Fig. 7; in both

figures, experimental points deviate below the theoretical

curves for T , 110 8C, where the sliding motion of chains

in lamellae is slowed down. Lamellar thickness �lc is not

given in AS’s paper [6], but it is estimated from their early

work [4] in which the same experiments are done using the

same sample (BASF Lupolen 6011L); from heating curves

of �lc crystallized at Tc ¼ 125 and 127 8C (Fig. 8 of Ref. [4]),
�lc (crystallized at Tc ¼ 124 8C) is estimated to be �lc < 28

nm at T ¼ 124 8C: From Fig. 14, �Lc is estimated to be 320

[CH2] at j ¼ 0:51 and DTc ¼ 21:5; it is converted into

lamellar thickness �lc ¼ 34:7 nm; which is near the exper-

imental value, 28 nm. In our theory, �lc is primarily

determined by nuclear size lpc ; which is given by the

empirical Eq. (5.1). Particularly in this work, k on the rhs of

Eq. (5.18) is treated as a main adjustable parameter

determining lpc or, more simply, as a sole adjustable

parameter to fit �lc to the experiment, (note that observable

quantities, fc þ fi; �la and �lc; depend only weakly on tight-

folding ratio wf and tilt angle a; so that it is not worth

discussing the accuracy of their assumed values wf ¼ 0:3

Fig. 15. Frontier a-domain thickness �Lp
a ; k is changed between 2.6 and 6, j

fixed at unity.

Fig. 16. Average number of LKs trapped per a-section; j is changed

between 0.4 and 1, k fixed at four.

Fig. 17. A trapezoid form of the growing front of lamella.

5 Some of these problems have been discussed in the annual meetings of

the polymer society of Japan [21,23].
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and a ¼ 0; their changes are formally included in the

variation of k ). The best fit of �lc is obtained at k ¼ 2:99;
which is in the acceptable range from the most probable

value, k ¼ 4: In Fig. 21, T-dependence of �la determined by

Albrecht and Strobl [6] is shown by open circles (cooling

process) and filled circles (heating process); a theoretical

curve computed for j ¼ 0:51 and k ¼ 2:99 is shown by a

bold line, which deviates ca. 1.5 nm above the experimental

points but its T-dependence agrees well with the exper-

iment. The deviation may be due to neglecting the

interfacial domains in the present calculation.2

AS argued that �laðTÞ is almost independent of the

crystallization condition [6]. According to Eq. (5.15), �La is

determined by x and �n; among which x is a universal

function of T, while �n is almost independent of T, if

assumption �n < �np and j < jp hold. In our theory, �n (strictly

speaking �np) is determined in the growing process of

lamellae so that it changes with Tc and jp ð< jÞ as shown in

Fig. 16. Thus, �La has a common T-dependence determined

by xðTÞ but its magnitude is determined by �n; which changes

with the crystallization condition in contrast to AS’s

argument [6]. However, �n changes only slightly for a

small variation of Tc; for example, if Tc changes from 124 to

125 8C, �n changes from 2.695 to 2.833 (j is fixed at 0.51) or
�La (and hence �la) increases only by 5%, which is almost

within the experimental error. AS considered that �la is a

common function of T by comparing �la vs. T curves of

samples crystallized at Tc ¼ 124; 125 and ,124 8C (Fig. 10

in their paper [6]); looking at their picture closely, however,

the curves have a common T-dependence but seem to

dislocate a little vertically. Strictly, their results should be

interpreted that �la has a common T-dependence and its

magnitude changes only slightly with the crystallization

conditions; this is consistent with our results. In our theory,

�nðTc; jÞ increases monotonically with increasing Tc as

shown in Fig. 16, but �la seems change irregularly with Tc

in AS’s experiment (Fig. 10 of their paper [6]); this may be

explained that j also changes with the crystallization

condition. However, the shifts are too small to give a

definite answer. Further experiments changing M and Tc

wildly are expected.

Fig. 19. Condensation ratio of LKs in the equilibrium a-domains, x, and in

the growing front, xp:

Fig. 20. Crystallinity fc þ fi of polyethylene (Lupolen 6011L,

Tc ¼ 124 8C) measured by Albrecht and Strobl [6]. Data are read from

Fig. 8 of their paper [6]. Experimental points are fitted by theoretical cure

for j ¼ 0:51; k ¼ 2:99 and C ¼ 1:25:

Fig. 21. T-dependence of a-domain thickness �la measured by Albrecht and

Strobl for polyethylene (Lupolen 6011L, Tc ¼ 124 8C) [6]. The theoretical

curve is computed for j ¼ 0:51; k ¼ 2:99 and C ¼ 1:25:

Fig. 18. Ratio �lc=�l
p
c computed for various k; j fixed at unity.
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6. Concluding remarks

The purpose of this work is to give a grand scope of the

roles of entanglement in crystalline polymers. The essential

point of our theory is that structure of semi-crystalline

polymers (such as wc; �La and �Lc) is determined by three

variables due to entanglement, condensation ratio x,

trapping ratio j and average number �n of LKs trapped per

strand in a-domains, which have never been discussed

before. It is shown that xð¼ 1=ŵ1
a Þ is a universal function of

the reduced temperature, t ¼ ðNcDhm=kBT0
mÞDT=T; which

is common for the all polymers including simulation

models. Thermodynamically, V=V0 ¼ 1=xðtÞ represents

the reduced equation of state of LK, where V is the volume

of the a-domain (or of a catena network considered in the

previous work [17]) and V0 is the volume in the topological

equilibrium state; this is an analogy of the reduced equation

of state of gasses, in which T, V and P are reduced by their

triple point values. The universality nature of xðtÞ is

observed in Arbrecht and Storobl’s experiment [4,6] in

which �laðTÞ has a common T-dependence independent of the

crystallization condition. If reduced temperature t is used

for T, �laðtÞ should have a common t-dependence indepen-

dent of polymer spices. Theoretically, xðtÞ is computed by

simulation of catena networks independently of crystalline

polymers [17]. Experimentally, x ð¼ 1=ŵ1
a Þ is determined

from equilibrium crystallinity, say, fc þ fi of polyethylene

measured by Fatou and Manderkern [24], assuming that

their highest molecular-weight sample ðMh ¼ 1:55 £ 106Þ is

in the limit M !1: To know the precise functional form of

xðtÞ ¼ 1=ŵ1
a ðtÞ is important in the study of crystalline

polymers as well as of entanglement. Measurement of ŵ1
a is

necessary to know an empirical equation of state of LK. In

semi-crystalline polymers, ŵ1
a is used to determining the

trapping ratio j using Eq. (3.6). It is, therefore, highly

expected for Fatou and Manderkern’s experiments [24] to

be done using more high molecular weight and narrow-

distributed samples.

Another important finding is that the topological free

energy of entanglement accumulated in a-domains gives a

serious effect on the melting phenomena of stacked lamellar

crystals. Particularly, interfacial energy se changes largely

from that determined by the usual Thompson–Gibbs

equation. The problem is that the effect of freezing

temperature T^ has not been considered well in melting

experiments, because lamellar thickness �lc changes only

slightly with a small change of T^: However, the

topological free energy depends strongly on T^ and even

a slight change of T^ gives a large effect on se as shown in

Tables 2 and 3. To solve this problem, samples should be

equilibrated at T^ as close as possible to Tm for a

sufficiently long time and, then, the temperature should be

changed rapidly to Tm so that T^ is kept constant. It is a

serious problem that a precise value of se in stacked

lamellar crystals is not known. Is it different from its

ordinary value 90 erg/cm2 or does it change with tight-

folding ratio wf as Eq. (5.5) suggests? For quantitative

comparison of the theory with experiments, se must be

known accurately. For this purpose, further experiments are

expected which are applicable to Eq. (4.5). Since Eq. (4.5)

contains trapping ratio j; ŵ1
a ðtÞ must be known first to

determine se: Precise determination of ŵ1
a ðtÞ ¼ 1=xðtÞ is,

therefore, the first step to the all entanglement problems.

In Fig. 21, �laðTÞ agrees fairly well with the experiments

of Albrecht and Strobl [6] but, in principle, it should agree

almost exactly if the interfacial domains are considered,

because x; j and �n are determined to fit experiments. In the

present work, j was determined for crystallinity fc þ fi to

agree with the experiment; parameter k (c.f. Eq. (5.18)),

which determines �n; was adjusted for lamellar thickness �lc to

agree with the experiment; parameter C (c.f. Eq. (2.5) and

(2.50)) is adjusted for 1=xðtÞ to agree with experimental

ŵ1
a ðtÞ: Therefore, the agreement shown in Fig. 21 is almost

a matter of course, although it shows that the theory is self-

consistent. The important point is that these agreements are

obtained for reasonable values of the parameters, C ¼ 1:25

and k ¼ 2:99 for polyethylene. This indicates that we are

going on a right way, although further improvements in

regard to interfacial domains and chain-end effects are

necessary for quantitative discussions. Among these

parameters, C is a matter of pure entanglement problems:

It should be studied in the context of universality of

entanglement, where it is discussed which of nc; Ne; Np
e ;

L0
LK; etc. is the most appropriate parameter of entanglement

[18,19]; this problem is now under investigation and will be

answered soon. In this work, k is treated as an adjustable

parameter, but it should be determined in the theory of

nucleation which will be presented in the next paper [22,32].

Theoretically, j is determined how LKs are unknotted in the

process of crystallization so that it is a kind of chain-end

effects which are neglected in the present work; this

problem will be studied in future works.

The present work is an introduction to the topological

theory of crystalline polymers, in which such problems as

(1)–(4) stated in the beginning have been studied [20–23].

Beside them, there are many problems, such as unknotting

of LKs during crystallization and annealing, surface-

roughening phenomena, memory of crystal after melting,

single crystal formation in dilute solutions, formation of

super structures (such as spherulite or axialite), stress

crystallization, fiber crystal formation by drawing and so on,

in which entanglement will play important roles. They are

also our future problems.
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